RTI in Hardware

Robert Martí
Contents

- RT Image Processing
- Platforms
- FPGAs
The time between the presentation of a set of inputs and the appearance of all the associated outputs.
Real-Time Image Processing

Digital Signal in → Real-Time Digital Processing → Digital Signal out

Example:
- Processor clocked at 120 MHz and can perform 120MIPS
- 120MHz / 3 Mpixels = 40 Instructions per pixel

<table>
<thead>
<tr>
<th>Format</th>
<th>Lines/Frame × Pixels/Line × Frames/Second</th>
<th>Sampling Rate (million pixels per second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIF (videoconferencing)</td>
<td>$360 \times 288 \times 30 = \text{3}$</td>
<td>3</td>
</tr>
<tr>
<td>CCIR (TV)</td>
<td>$720 \times 576 \times 30 = \text{12}$</td>
<td>12</td>
</tr>
<tr>
<td>HDTV</td>
<td>$1280 \times 720 \times 60 = \text{60}$</td>
<td>60</td>
</tr>
</tbody>
</table>
What can be done to achieve RTI?

- Faster hardware: 120 MHz to 2.53 GHz

 $2.53 \text{GHz} / 3 \text{ Mpixels} = 840 \text{ Instructions per pixel}$

- Hardware architectures
 - Sequential vs Parallel.
 - What would be the $\text{I}pp$ if we could do 2 instructions in parallel? And n?
 - SIMD – MIMD – MISD
 - GPPs – DSPs - FPGAs
RTI data characteristics

- Large number of samples being continuously fed to the system (samples or blocks).
- Repetitive Operations:
 - The same operation being applied to different set of samples
 - Parallel processing
- Vector and Matrix Operations
- Real time operations
Example: Digital Filtering

- The basic FIR (Finite Impulse Response) equation

\[y[n] = \sum_{i=0}^{N} b_i x[n - i]. \]

where \(b_i \) is an array of coefficients, and \(x \) the input signal.

Convolution!

In C language

```c
y[n]=0;
For (n=0; n<N; n++)
{
    For (i = 0;i<N;i++)
        y[n] = y[n] + h[i]*x[n-i];
}
```

Only Multiply and Accumulate (MAC) is needed!
Example: Digital Filtering

FIR using General Purpose Processor (GPP)

```
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Symbol(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clr A</td>
<td>Clear Accumulator A</td>
<td>A</td>
</tr>
<tr>
<td>Clr B</td>
<td>Clear Accumulator B</td>
<td>B</td>
</tr>
<tr>
<td>MOV *R0, Y0</td>
<td>Move data from memory location 1 to register Y0</td>
<td>R0, Y0</td>
</tr>
<tr>
<td>MOV *R1, X0</td>
<td>Move data from memory location 2 to register X0</td>
<td>R1, X0</td>
</tr>
<tr>
<td>Mpy X0,Y0,A</td>
<td>X0*Y0 -&gt; A</td>
<td>X0, Y0, A</td>
</tr>
<tr>
<td>Add A,B</td>
<td>A + B -&gt; B</td>
<td>A, B</td>
</tr>
<tr>
<td>Inc R0</td>
<td>R0 + 1 -&gt; R0</td>
<td>R0</td>
</tr>
<tr>
<td>Inc R1</td>
<td>R1 + 1 -&gt; R1</td>
<td>R1</td>
</tr>
<tr>
<td>Dec N</td>
<td>Dec N (initially equals to 3)</td>
<td>N</td>
</tr>
<tr>
<td>Tst N</td>
<td>Test for the value</td>
<td>N</td>
</tr>
<tr>
<td>Jnz Loop</td>
<td>Different than zero loop again</td>
<td>Loop</td>
</tr>
<tr>
<td>Mov B,*R2</td>
<td>Move result to memory</td>
<td>B, R2</td>
</tr>
</tbody>
</table>
```

Real-Time Image Processing - Vibot
Example: Digital Filtering

1. FIR using a Digital Signal Processor (DSP)

```
<table>
<thead>
<tr>
<th>Clr</th>
<th>A</th>
<th>; Clear Accumulator A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep</td>
<td>N</td>
<td>; Rep N times the next instruction</td>
</tr>
<tr>
<td>MAC</td>
<td>*(R0)+, *(R1)+, A</td>
<td>; Fetch the two memory locations pointed by R0 and R1, multiply them together and add the result to A, the final result is stored back in A</td>
</tr>
<tr>
<td>Mov</td>
<td>A, *R2</td>
<td>; Move result to memory</td>
</tr>
</tbody>
</table>
```

FIR using an FPGA (and Handel-C)

while(1)
{
 par
 {
 /*Pipeline stage 1: get data */
 Input = InputBus.in;

 /*Pipeline stage 2 - deal with data */

 /* Pipeline stage 3 - perform multiplications */
 par (i = 0; i != TAPS; i++) {
 MultResult[i] = adjs(DataArray[i], (DATAWIDTH * 2)) * CoeffData[i];
 }

 /* Pipeline stage 4 - perform additions */
 Output = AddMultResult(TAPS);
 }
}

macro expr AddMultResult(n) =
 select(n == 0, 0, adjs(MultResult[n - 1], ResultWidth) +
 AddMultResult(n - 1));
Example: Digital Filtering

- FIR using an FPGA (and Handel-C)

Stage 1

Stage 2

Stage 3

Stage 4

d[0] to d[8] are the nine items of data

c[0] to c[8] are the nine coefficients

output
Platforms

- GPPs drawbacks
 - More instructions/task
 - Common memory for data and program
 - Limited bus/memory bandwidth

- Solution? DSPs, FPGAs, ASICs...
Platforms

- GPPs

Diagram:
- Memory
- Register 1
- Register 2
- ALU

Memory Data Bus
Platforms

- DSPs

Program Memory Data Bus

Program Memory

Data Memory

Multiplexer

Multiplexer

Data Memory Data Bus

ALU

Accumulator
Memory structures

Von Neuman architecture
Area efficient but requires higher bus bandwidth because instructions and data must compete for memory.

Harvard architecture was coined to describe machines with separate memories. Speed efficient: Increased parallelism.
DSP versus GPP

- **Multiple parallel units**
 - multiply accumulate (possibly several units)
 - address calculation in parallel to processing
 - barrel shifter

- **Memory Access**
 - special ALU for address calculation
 - Bit reversed addressing
 - circular addressing

- **Automatic loops**
 - Software looping: writing assembly code to perform branching
 - Hardware looping: dedicated hardware loop counter register
DSP Alternatives

Wireless Systems requires more and more high performance and higher bandwidth.

- 2G: 100 MIPS, 8-13 Kbps
- 2.5G: 10,000 MIPS, 64-384 Kbps
- 3G: ~100,000 MIPS, 384-2000 Kbps

DSP performance might not be enough for future applications.
DSP alternatives

- High-performance GPPs with DSP enhancements.
 - Eliminating the need of a DSP and GPP for many products and thus reducing cost
 - Example: Pentium 4
 - Single Instruction Multiple Data (SIMD) instructions allowing identical operations on multiple pieces of data in parallel.
 - 144 new special instructions providing advanced capabilities for applications such as 3D graphics, video encoding/decoding, and speech recognition.
 - Several Data Types (floating/integer)

- Multi-Core DSPs
- Application Specific Integrated Circuits (ASIC)
- Field Programmable Gate Array (FPGA)
ASICS

- Uses hard-wired logic with varied architectures according to the application

- Advantages
 - Speed
 - Reduced Power Consumption
 - Cost/performance
 - Design Flexibility

- Disadvantages
 - Large development costs
 - Lengthy development cycles
 - Inflexibility
FPGAs

- Network of reconfigurable hardware with reconfigurable interconnect controlled by a switching matrix
- Recently includes DSP features
 - ALTERA (e.g.: Stratex) & XILINX (e.g.: Virtex)
- Advantages:
 - More Flexible than ASIC
 - Huge Performance Gain in Some Applications
 - Re-use Hardware for different applications
- Disadvantages:
 - Long Development Cycle
 - Expensive compared to DSP
 - Much higher power consumption compared to DSP
 - Slow time to market compared to DSP

Real-Time Image Processing - Vibot Master - UdG -
FPGAs

- FPGA used in this course. Xilinx Spartan 3 (3S1500)

<table>
<thead>
<tr>
<th>Spartan-3</th>
<th>XC3S50</th>
<th>XC3S200</th>
<th>XC3S400</th>
<th>XC3S1000</th>
<th>XC3S1500</th>
<th>XC3S2000</th>
<th>XC3S4000</th>
<th>XC3S5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Gates</td>
<td>50K</td>
<td>200K</td>
<td>400K</td>
<td>1000K</td>
<td>1500K</td>
<td>2000K</td>
<td>4000K</td>
<td>5000K</td>
</tr>
<tr>
<td>Logic Cells</td>
<td>1,728</td>
<td>4,320</td>
<td>8,064</td>
<td>17,280</td>
<td>29,952</td>
<td>46,080</td>
<td>62,208</td>
<td>74,880</td>
</tr>
<tr>
<td>18x18 Multipliers</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>96</td>
<td>104</td>
</tr>
<tr>
<td>Block RAM Bits</td>
<td>72K</td>
<td>216K</td>
<td>288K</td>
<td>432K</td>
<td>576K</td>
<td>720K</td>
<td>1,728K</td>
<td>1,872K</td>
</tr>
<tr>
<td>Distributed RAM Bits</td>
<td>12K</td>
<td>30K</td>
<td>56K</td>
<td>120K</td>
<td>208K</td>
<td>320K</td>
<td>432K</td>
<td>520K</td>
</tr>
<tr>
<td>DCMs</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I/O Standards</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Max Differential I/O Pairs</td>
<td>56</td>
<td>76</td>
<td>116</td>
<td>175</td>
<td>221</td>
<td>270</td>
<td>312</td>
<td>344</td>
</tr>
<tr>
<td>Max Single Ended I/O</td>
<td>124</td>
<td>173</td>
<td>264</td>
<td>391</td>
<td>487</td>
<td>565</td>
<td>712</td>
<td>784</td>
</tr>
</tbody>
</table>
FPGAs

- A FPGA consists of programmable logic blocks and routing
- In most FPGAs, the basic logic block contains a Lookup Table (LUT) and a flip-flop (FF)
- Logic is implemented in these LUTs
- There may well be other logic, such as multiplexers and carry logic
- Fast and configurable routing resources.
- There are also dedicated low-skew clock nets
- Modern FPGAs also have other important resources
 - Dedicated memory resources
 - Dedicated arithmetic blocks (ALUs)
 - Processor cores
 - Fast serial I/O

Real-Time Image Processing - Vibot Master - UdG -
FPGAs

- **Xilinx Spartan 3**
 - **Configurable Logic Blocks (CLBs).** RAM-based Look-Up Tables (LUTs) to implement logic and storage elements that can be used as flip-flops or latches.
 - **Input/Output Blocks (IOBs)** control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Block RAM provides data storage in the form of 18-Kbit dual-port blocks.
 - **Multiplier blocks** accept two 18-bit binary numbers as inputs and calculate the product.
 - **Digital Clock Manager (DCM) blocks** provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase shifting clock signals.
FPGAs

- Xilinx Spartan 3
FPGAs

- Xilinx Spartan 3
FPGAs

How big is a FPGA? For RTI not enough!

- People usually talk about “gates” or “ASIC equivalent gates”
- The only absolute figures you can use are
 - The number of LUT/FF pairs
 - CLBs/Slices in Xilinx
 - LABs/LEs in Altera
 - The number of RAM bits
 - The number of hard arithmetic units

For exact values, refer to the device data book!

XILINXfPGAds099.pdf
FPGAs

- How big is a FPGA? For RTI not enough!
 - People usually talk about “gates” or “ASIC equivalent gates”
 - The only absolute figures you can use are
 - The number of LUT/FF pairs
 - CLBs/Slices in Xilinx
 - LABs/LEs in Altera
 - The number of RAM bits
 - For XILINX

<table>
<thead>
<tr>
<th>Spartan-3</th>
<th>XC 3S50</th>
<th>XC 3S200</th>
<th>XC 3S400</th>
<th>XC 3S1000</th>
<th>XC 3S1500</th>
<th>XC 3S2000</th>
<th>XC 3S4000</th>
<th>XC 3S5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Gates</td>
<td>50K</td>
<td>200K</td>
<td>400K</td>
<td>1000K</td>
<td>1500K</td>
<td>2000K</td>
<td>4000K</td>
<td>5000K</td>
</tr>
<tr>
<td>Logic Cells</td>
<td>1,728</td>
<td>4,320</td>
<td>8,064</td>
<td>17,280</td>
<td>29,952</td>
<td>46,080</td>
<td>62,208</td>
<td>74,880</td>
</tr>
<tr>
<td>18x18 Multipliers</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>96</td>
<td>104</td>
</tr>
<tr>
<td>Block RAM Bits</td>
<td>72K</td>
<td>216K</td>
<td>288K</td>
<td>432K</td>
<td>576K</td>
<td>720K</td>
<td>1,728K</td>
<td>1,872K</td>
</tr>
<tr>
<td>Distributed RAM Bits</td>
<td>12K</td>
<td>30K</td>
<td>56K</td>
<td>120K</td>
<td>200K</td>
<td>320K</td>
<td>432K</td>
<td>520K</td>
</tr>
<tr>
<td>DCMs</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I/O Standards</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Max Differential I/O Pairs</td>
<td>56</td>
<td>76</td>
<td>116</td>
<td>175</td>
<td>221</td>
<td>270</td>
<td>312</td>
<td>344</td>
</tr>
<tr>
<td>Max Single Ended I/O</td>
<td>124</td>
<td>173</td>
<td>264</td>
<td>391</td>
<td>487</td>
<td>565</td>
<td>712</td>
<td>784</td>
</tr>
</tbody>
</table>
FPGAs

- LUTs
 - Both Altera and Xilinx FPGAs have 4-input LUTs (except Stratix II)
 - A LUT can be thought of as implementing the truth table for a four input, one output circuit
 - Any circuit with four inputs and one output can be mapped into a single LUT
 - Each LUT’s truth table is fixed at start-up, so a LUT only ever performs the same logic function
 - A different logic function with the same four inputs, another LUT will be used
LUTs. Example.

```c
unsigned 1 a, b, c, d, e;
e = (a ^ b) | (c & d);
```

If the code has 5 inputs, it maps to 2 LUTs!
FPGAs

- **Place & Route**
 - Placement is the process of putting individual components in specific locations in the device.
 - Routing is the process of connecting all the components together in the device such that the routing delay between components meets timing constraints.

- Always check timing report.
- Look for changes in mapping report.
 - Is something being optimised away?
- Learn how to set effort levels.
FPGAs

Place & Route. Example in DK

Device Utilization Summary:

- Number of BUFGs: 5 out of 8 - 62%
- Number of DCMs: 2 out of 4 - 50%
- Number of External IOBs: 60 out of 221 - 27%
- Number of LOCed IOBs: 50 out of 60 - 100%
- Number of RAMB16s: 8 out of 92 - 90%
- Number of Slices: 876,035 / 1,331,2 - 6%
- Number of SLICEMs: 104 out of 6,666 - 1%

Overall effort level (-ol): Standard
Placer effort level (-pl): High
Placer cost table entry (-t): 1
Router effort level (-rl): Standard

Starting initial Timing Analysis. REAL time: 7 secs
Finished initial Timing Analysis. REAL time: 7 secs
Starting Placer
Phase 1.1
Phase 1.1 (Checksum: 98bfe7) REAL time: 9 secs

Starting Router
Phase 1: 5968 unrouted; REAL time: 37 secs
Phase 2: 4886 unrouted; REAL time: 35 secs
Phase 3: 943 un routed; REAL time: 20 secs
Phase 4: 943 unrouted; REAL time: 41 secs
Phase 5: 1024 unrouted; 4 mins 39: REAL time: 445474

Real-Time Image Processing - Vibot Master - UdG -
FPGAs

Will my design fit?

“How many NAND gates will fit in my FPGA?” It depends!

No direct correspondence between NAND gates and LUTs

The LUT, Flip-Flop and memory counts are the significant numbers

If it fits in terms of LUT and flip-flops, it may not place or route

There may not be enough routing resources

e.g. if you are using 99% of FFs and LUTs, the tools might not be able to route your design

Conclusion: place and route your design before making any firm conclusions.
To know more...

RTI in Hardware

Robert Martí