Chapter 3: Forward Kinematics (I)

Index:

1. Introduction and Definitions
 - Definitions
 - Inverse and Forward Kinematics
 - Forward Kinematics. θ-r Manipulator (1st example)
 - Characterization of Robotic Arms
 - Forward Kinematics: Angular Joint Characterization
 - Forward Kinematics: Prismatic Joint Characterization
 - Forward Kinematics: Link and Joint Parameters

2. Algorithm of Denavit-Hartemberg
 - Introduction
 - D-H Algorithm: Example θ-r Robot
 - θ-r Robot: Geometric Solution

3. Forward Kinematics. Matlab Robotic Toolbox Functions
 - Main Functions
 - θ-r Robot Example

4. Exercices to solve: scara, ABB IRB 6400, Mitsubishi RV-M1, stanford
Introduction and Definitions

Robotic Manipulator: can be modeled as a chain of rigid bodies called *links*. The links are interconnected to one another by *joints*.

One end of the chain of links is fixed to a base, while the other end is free to move (face plate with a tool or end-effector)
Introduction and Definitions

Objective of Kinematics: To control both the position and orientation of the tool in 3D space.

The tool can then be programmed to follow a planned trajectory so as to manipulate objects in the workspace.

In order to program the tool motion, we must first formulate the relationship between joint variables and the position and orientation of the tool !!!!

A systematic procedure for assigning coordinate frames to the links is presented (DH Algorithm) ... and this leads directly to *Arm Equation*
Introduction and Definitions

Robot kinematics: study of the movement of the robot referred to a reference system without considering forces and torques that cause the movement.

Robot Kinematics is the analytical description of spatial movement of the robot as a function of time ...

... and particularly the relationships between position and orientation of the hand, and the values of the joint variables

Robot Kinematics deals also with the relationships between speeds of joints and speeds of the end-effector
Given the vector of joint variables \((q_1, q_2, ..., q_n)^T\)

... determine the position \((x, y, z)\) and orientation (Roll, Pitch, Yaw) of the end-effector in the base coordinate system.
Introduction and Definitions

Forward Kinematics

Forward Kinematics Problem

\[(q_1, q_2, ..., q_n)^T \rightarrow (x, y, z, \theta, \phi, \alpha)^T\]

Values of Joint variables \rightarrow Position and Orientation

Is that really interesting ?????

Yes, ... but I think not at all !!

But it will be necessary for further analysis
Introduction and Definitions

Inverse Kinematics: determining the necessary joint variables given a desired position and orientation of the tool.

Manipulation tasks are naturally formulated in terms of the “desired” tool position and orientation.

Example: an external overhead camera provides positions and orientations of the objects (not joint variables !!!!!!!!).

That is really interesting !!!!!!!!!!

But ... we need to know Forward Kinematics
Introduction and Definitions

Forward Kinematics

1-. We will allocate a coordinate system \{Li\} for each link (*)
2-. We will compute the matrices \(i^{-1}A_i\) which transform \(L_{i-1}\) to \(L_i\)
\(i^{-1}A_i\) is a homogeneous matrix that depends of \(q_i\) (joint variable)
3-. We will compute the transformation that relates the hand with the base

\[
R_T^H = \prod_{i=1}^{n} i^{-1} A_i =
\begin{pmatrix}
 n_x & s_x & a_x & p_x \\
 n_y & s_y & a_y & p_y \\
 n_z & s_z & a_z & p_z \\
 0 & 0 & 0 & 1
\end{pmatrix}_H
\]

The different components of this matrix are equations related to the joint variables \(q_i\).

(*) How to assign the coordinate systems to links?

Denavit-Hartemberg Algorithm !!!
Introduction and Definitions

θ-r Manipulator RP (1st Example)

This is a robot with two joints (rotation movement θ_1 about an axis, and displacement movement d_2 along another axis)

We place 3 coordinate systems: 1 coordinate system at the base of the robot $\{L_0\}$ and 2 coordinate systems at the ends of the links $\{L_1, L_2\}$

First link is described by the relationship between $\{L_0, L_1\}$ and the second link by the relationship between $\{L_1, L_2\}$
Introduction and Definitions

θ-r Manipulator RP (1st Example)

1-. We allocate a coordinate system \{Li\} for each link *(please, believe me !!!!)*
2-. We compute the matrices \(i^{-1}A_i\) which transform \(L_{i-1}\) to \(L_i\)
\(i^{-1}A_i\) is a homogeneous matrix that depends of \(q_i\) (joint variable)
3-. We compute \(^R_{TH} (^0T_2, \text{in this case})\)
The transformation that relates the hand with the base of the robot

Let:
\[
\begin{align*}
0 & \quad A_i \quad \text{homogeneous matrix that relates } L_1 \text{ with } L_0 \\
1 & \quad A_2 \quad \text{homogeneous matrix that relates } L_2 \text{ with } L_1
\end{align*}
\]

then

\[
^RT_H = ^0A_1 \cdot ^1A_2 = ^RT_H = \begin{bmatrix}
R & \begin{bmatrix}
 n_x & s_x & a_x & p_x \\
 n_y & s_y & a_y & p_y \\
 n_z & s_z & a_z & p_z \\
 0 & 0 & 0 & 1
\end{bmatrix}_H
\end{bmatrix}
\]

\(^RT_H\) is a matrix of equations with 2 variables: \(\theta_1\) and \(d_2\)
(please, believe me !!!!)
Introduction and Definitions

Forward Kinematics: Characterization of Robotic Arms

There exist a lot of possibilities to connect links and joints for obtaining poliarticulated structures:

Angular Joints

![Angular Joints Diagram]

Prismatic Joints

![Prismatic Joints Diagram]

Is it possible to obtain a general matrix $i^{-1}A_i$ that, depending of a set of parameters makes the transformation L_{i-1} to L_i?

Yes we are going to see immediately !!!!
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

Imagine the general case of an Angular Joint ...

There is a well-defined methodology for doing that !!!!

Denavit-Hartememberg Algorithm

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

u_i is the axis of the angular joint under consideration

u_{i+1} is the axis of the next joint (angular in this case)

A coordinate system is PROPERLY attached to each link: \{L_{i-1}\} and \{L_i\}

Please ... believe me !!!!
We want to obtain $i^{-1}A_i$
Different movements we have to do from $\{L_{i-1}\}$ to $\{L_i\}$
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>-90°</td>
<td></td>
<td></td>
<td></td>
<td>-90°</td>
</tr>
</tbody>
</table>

$A_{i-1}^{-1} = I$

$A_i^{-1} = I \cdot Rot(\theta_i, z)$

Pre o Post Multiplication? Doesn’t matter in this case!!
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

\[i^{-1}A_i = I \]
\[i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \]
\[i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \]

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>-90(^\circ)</td>
<td>(d_i)</td>
<td></td>
<td></td>
<td>-90(^\circ)</td>
</tr>
</tbody>
</table>
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

\[
\begin{align*}
&i^{-1}A_i = I \\
&i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \\
&i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \\
&i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i)
\end{align*}
\]

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>-90º</td>
<td>(d_i)</td>
<td>(a_i)</td>
<td></td>
<td>-90º</td>
</tr>
</tbody>
</table>

Postmultiplication !!!
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

\[
\begin{align*}
\theta &= -90^\circ \\
da &= d_i \\
a &= a_i \\
\alpha &= \alpha_i \\
\text{Home} &= -90^\circ \\
\end{align*}
\]

\[
\begin{array}{c|c|c|c|c|c}
\text{DoF} & \theta_i & d_i & a_i & \alpha_i & \text{Home} \\
\hline
i & -90^\circ & d_i & a_i & 90^\circ & -90^\circ \\
\end{array}
\]

\[
i^{-1}A_i = I \\
i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \\
i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \\
i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i) \\
i^{-1}A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i) \cdot \text{Rot}(\alpha_i, x)
\]

Postmultiplication !!!
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

\[i^{-1} A_i = I \]
\[i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \]
\[i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \]
\[i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i) \]
\[i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i) \cdot \text{Rot}(\alpha_i, x) \]

Angular Joint Characterization

\[i^{-1} A_i = \begin{bmatrix}
 c\theta_i & -c\alpha_i \cdot s\theta_i & s\alpha_i \cdot s\theta_i & a_i \cdot c\theta_i \\
 s\theta_i & c\alpha_i \cdot c\theta_i & -s\alpha_i \cdot c\theta_i & a_i \cdot s\theta_i \\
 0 & s\alpha_i & c\alpha_i & d_i \\
 0 & 0 & 0 & 1
\end{bmatrix} \]
Introduction and Definitions

Forward Kinematics: Angular Joint Characterization

\[i^{-1}A_i = \begin{pmatrix}
 c\theta_i & -c\alpha_i\cdot s\theta_i & s\alpha_i\cdot s\theta_i & a_i\cdot c\theta_i \\
 s\theta_i & c\alpha_i\cdot c\theta_i & -s\alpha_i\cdot c\theta_i & a_i\cdot s\theta_i \\
 0 & s\alpha_i & c\alpha_i & d_i \\
 0 & 0 & 0 & 1
\end{pmatrix}_i \]

\(\theta_i \) (is the joint angular variable): rotation about \(z_{i-1} \) needed to make axis \(x_{i-1} \) parallel with axis \(x_i \) (DEFINITION !!)

HOME POSITION: the value of the joint variable (\(\theta_i \) in this case) considering the figure, ... \(\theta_i = -\pi/2 \)
Imagine now the general case of a Prismatic Joint...

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

u_i is the axis of the prismatic joint under consideration

u_{i+1} is the axis of the next joint (prismatic in this case)

A coordinate system is **PROPERLY** attached to each link: \(\{L_{i-1}\} \) and \(\{L_i\} \)

Believe me again, please

There is a well-defined methodology for doing that !!!!

Denavit-Hartemberg Algorithm
Introduction and Definitions

Forward Kinematics: Prismatic Joint Characterization

Prismatic Joint Characterization

\[
i^{-1} A_i = I
\]
\[
i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z)
\]
\[
i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i)
\]
\[
i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i)
\]
\[
i^{-1} A_i = I \cdot \text{Rot}(\theta_i, z) \cdot \text{Trans}(z, d_i) \cdot \text{Trans}(x, a_i) \cdot \text{Rot}(\alpha_i, x)
\]

\[
i^{-1} A_i = \\
\begin{pmatrix}
c \theta_i & -c \alpha_i \cdot s \theta_i & s \alpha_i \cdot s \theta_i & a_i \cdot c \theta_i \\
c \alpha_i \cdot c \theta_i & c \alpha_i \cdot c \theta_i & -s \alpha_i \cdot c \theta_i & a_i \cdot s \theta_i \\
0 & s \alpha_i & c \alpha_i & d_i \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>90°</td>
<td>(d_i)</td>
<td>(a_i)</td>
<td>90°</td>
<td>(d_i)</td>
</tr>
</tbody>
</table>

Leaving out the different steps ...
Introduction and Definitions

Forward Kinematics: Prismatic Joint Characterization

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>90°</td>
<td>d_i</td>
<td>a_i</td>
<td>90°</td>
<td>d_i</td>
</tr>
</tbody>
</table>

It is the same matrix that the angular joint!!!

It is a General Matrix !!!!
Introduction and Definitions

Forward Kinematics: Prismatic Joint Characterization

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>90°</td>
<td>q_i</td>
<td>a_i</td>
<td>90°</td>
<td>d_i</td>
</tr>
</tbody>
</table>

d_i (is the joint variable): translation along z_{i-1} needed to make axis x_{i-1} intersect with axis x_i (DEFINITION !!)

HOME POSITION: the value of the joint variable (d_i in this case) considering the figure, d_i
Introduction and Definitions

Forward Kinematics: Characterization of Robotic Arms

Link and Joint Parameters:

Joint angle: θ_k (joint variable in an angular joint)
Joint distance: d_k (joint variable in a prismatic joint)

Link length: a_k
Link twist angle: α_k
Forward Kinematics: Algorithm of Denavit-Hartenberg

Definition of a procedure to establish a relationship between the different consecutive links that compose a robotic arm

... using a set of well-defined rules to assign a reference coordinate system to each one of the links.
Forward Kinematics: Algorithm of Denavit-Hartenberg

Choosing adequately the coordinate systems attached to each link, it's possible to relate two consecutive coordinate systems using 4 basic geometrical transformations (translations and rotations) that depends exclusively of the link geometry:

1. Rotation of θ_i about the Z_{i-1} axis (Joint angle: θ_i)
2. Translation of d_i along the Z_{i-1} axis (Joint distance: d_i)
3. Translation of a_i along the X_i axis (Link length: a_i)
4. Rotation of α_i about the X_i axis (Link twist angle: α_i)

REMEMBER: angular and prismatic joint characterization !!!
Forward Kinematics: Algorithm of Denavit-Hartenberg

It’s an algorithm with two loops !!

0. Number the **joints** from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_{k-1} \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k\leq n \) goto 8.

First Loop: locating coordinate systems **Second Loop:** obtaining parameters
0. Number the joints from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k<n \) goto 8.
DH Algorithm: Example $\theta - r$ Robot

0. Number the joints from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. Put X_k orthogonal to Z_k and Z_{k-1}. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k<n$ goto 8.
DH Algorithm: Example $\theta - r$ Robot

0. Number the **joints** from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. **Assign the coordinate system L_0 to base.** Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. Put X_k orthogonal to Z_k and Z_{k-1}. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k=n$ goto 8.
DH Algorithm: Example $\theta - r$ Robot

0. Number the **joints** from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. **Make coinciding Z_k with axis of joint $k+1$.**

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. Put X_k orthogonal to Z_k and Z_{k-1}. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k=n$ goto 8.
DH Algorithm: Example $\theta - r$ Robot

K=1, n=2

0. Number the **joints** from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. **Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}**. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. Put X_k orthogonal to Z_k and Z_{k-1}. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k\leq n$ goto 8.
DH Algorithm: Example $\theta - r$ Robot

0. Number the **joints** from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. **Put X_k orthogonal to Z_k and Z_{k-1}**. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k<n$ goto 8.
0. Number the **joints** from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. **Put X_k orthogonal to Z_k and Z_{k-1}**. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k\leq n$ goto 8.

DH Algorithm: Example $\theta - r$ Robot

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$K=1, n=2$
0. Number the joints from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1. \) If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k<n \) goto 8.
DH Algorithm: Example θ – r Robot

0. Number the joints from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k=n \) goto 8.

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DH Algorithm: Example \(\theta - r \) Robot

0. Number the joints from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don't have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k < n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k \leq n \) goto 8.
DH Algorithm: Example θ – r Robot

0. Number the **joints** from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector a (approach), \(Y_n \) with vector o (orientation) and \(X_n \) with vector normal n of end-effector. \(k=1 \).

8. **Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \).** If they don’t have intersection, place this point at the intersection of \(X_k \) and \(Z_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k<n \) goto 8.
0. Number the **joints** from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<\n \) goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k<\n \) goto 8.
DH Algorithm: Example $\theta – r$ Robot

0. Number the joints from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. Put X_k orthogonal to Z_k and Z_{k-1}. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k<n$ goto 8.
0. Number the **joints** from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector a (approach), \(Y_n \) with vector o (orientation) and \(X_n \) with vector normal n of end-effector. \(k=1 \).

8. **Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \).** If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k<n \) goto 8.
DH Algorithm: Example θ – r Robot

0. Number the **joints** from 1 to \(n \) beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system \(L_0 \) to base. Axis \(Z_0 \) coincides with the axis of joint number 1. Then initialize \(k=1 \).

2. Make coinciding \(Z_k \) with axis of joint \(k+1 \).

3. Put the origin of \(L_k \) in the intersection between axis \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) don’t have intersection, use intersection of \(Z_k \) with a common normal of \(Z_k \) and \(Z_{k-1} \).

4. Put \(X_k \) orthogonal to \(Z_k \) and \(Z_{k-1} \). If \(Z_k \) and \(Z_{k-1} \) are parallels, then \(X_k \) must be perpendicular to \(Z_{k-1} \), place it along the link and pointing out.

5. Select \(Y_k \) to complete the coordinate system \(L_k \).

6. \(k=k+1 \). If \(k<n \), goto 2.

7. Place origin of \(L_n \) at top of end-effector. Make coinciding \(Z_n \) with vector \(a \) (approach), \(Y_n \) with vector \(o \) (orientation) and \(X_n \) with vector normal \(n \) of end-effector. \(k=1 \).

8. Place the point \(b_k \) at the intersection of axis \(X_k \) and \(Z_{k-1} \). If they don’t have intersection, place this point at the intersection of \(X_k \) and a common normal to \(X_k \) and \(Z_k \).

9. \(\theta_k \) is the rotation angle from \(X_{k-1} \) to \(X_k \) measured on \(Z_{k-1} \).

10. \(d_k \) is the distance from the origin of \(L_{k-1} \) to point \(b_k \) measured along the \(Z_{k-1} \) axis.

11. \(a_k \) is the distance from point \(b_k \) to origin of \(L_k \) measured along \(X_k \) axis.

12. \(\alpha_k \) is the rotation angle from \(Z_{k-1} \) to \(Z_k \) measured on \(X_k \).

13. \(k=k+1 \). If \(k=n \) goto 8.

DoF

<table>
<thead>
<tr>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(q_1)</td>
<td>(d_1)</td>
<td>(0) (90^\circ)</td>
<td>(90^\circ)</td>
</tr>
</tbody>
</table>

\(K=2, \ n=2 \)
DH Algorithm: Example $\theta - r$ Robot

0. Number the **joints** from 1 to n beginning by the base and finishing at yaw, pitch and roll of end-effector (in this order).

1. Assign the coordinate system L_0 to base. Axis Z_0 coincides with the axis of joint number 1. Then initialize $k=1$.

2. Make coinciding Z_k with axis of joint $k+1$.

3. Put the origin of L_k in the intersection between axis Z_k and Z_{k-1}. If Z_k and Z_{k-1} don’t have intersection, use intersection of Z_k with a common normal of Z_k and Z_{k-1}.

4. Put X_k orthogonal to Z_k and Z_{k-1}. If Z_k and Z_{k-1} are parallels, then X_k must be perpendicular to Z_{k-1}, place it along the link and pointing out.

5. Select Y_k to complete the coordinate system L_k.

6. $k=k+1$. If $k<n$, goto 2.

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
<td>d_1</td>
<td>0</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>2</td>
<td>90°</td>
<td>q_2</td>
<td>0</td>
<td>0</td>
<td>d_2</td>
</tr>
</tbody>
</table>

7. Place origin of L_n at top of end-effector. Make coinciding Z_n with vector a (approach), Y_n with vector o (orientation) and X_n with vector normal n of end-effector. $k=1$.

8. Place the point b_k at the intersection of axis X_k and Z_{k-1}. If they don’t have intersection, place this point at the intersection of X_k and a common normal to X_k and Z_k.

9. θ_k is the rotation angle from X_{k-1} to X_k measured on Z_{k-1}.

10. d_k is the distance from the origin of L_{k-1} to point b_k measured along the Z_{k-1} axis.

11. a_k is the distance from point b_k to origin of L_k measured along X_k axis.

12. α_k is the rotation angle from Z_{k-1} to Z_k measured on X_k.

13. $k=k+1$. If $k<n$ goto 8.

K=3, n=2 The End !!
Forward Kinematics: \(\theta - r \) Robot

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(q_1)</td>
<td>(d_1)</td>
<td>0</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>2</td>
<td>90°</td>
<td>(q_2)</td>
<td>0</td>
<td>0</td>
<td>(d_2)</td>
</tr>
</tbody>
</table>

If we have the value of the joint variables we obtain position and orientation!!
Forward Kinematics: $\theta - r$ Robot
Geometric solution

θ_1 is the rotation angle from X_0 to X_1 measured on Z_0

θ_1 is the rotation angle from X_0 to X_1 measured on Z_0

d_2 is the distance from the origin of L_1 to point b_2 measured along the Z_1 axis

planar movement $\Rightarrow p_z = d_1$

$p_x = d_2 \cdot s_1$

$p_y = -d_2 \cdot c_1$

Interpretation of θ_1
Forward Kinematics:
Matlab Robotic Toolbox Functions

Main Functions:

link: definition of kinematics (and dynamics) characteristics of different links of a robot using D-H parameters (α, a, θ, d)

robot: to concatenate different links and to create the model of the robot

drivebot: simplified graphical representation of the robot

fkine: to solve the forward kinematics model
Forward Kinematics: $\theta - r$ Robot
Matlab Robotic Toolbox Functions

We are using the “standard” form of D-H algorithm (not the “modified” approach From Craig) (α, a, θ, d):

$L_1 = \text{link}([\pi/2 \ 0 \ \pi/2 \ d_1])$
$L_2 = \text{link}([0 \ 0 \ \pi/2 \ d_2])$

$\text{robottr} = \text{robot}([L_1,L_2], \text{“theta-r example”})$

$\text{drivebot}($robottr$)$

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q_1</td>
<td>d_1</td>
<td>0</td>
<td>90°</td>
<td>90°</td>
</tr>
<tr>
<td>2</td>
<td>90°</td>
<td>q_2</td>
<td>0</td>
<td>0</td>
<td>d_2</td>
</tr>
</tbody>
</table>
Forward Kinematics: $\theta - r$ Robot
Matlab Robotic Toolbox Functions

There are two well known robots already modeled in the Robotics Toolbox:

- **Puma560 (6R)**
- **Stanford (2RP3R)**

You can test the forward kinematics functions using these models
Exercises: Forward Kinematics

Scara (4 DoF)

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ₁</th>
<th>d₁</th>
<th>a₁</th>
<th>α₁</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercises: Forward Kinematics

Robot ABB IRB 6400C (6 DoF)

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercises: Direct Kinematics

Robot Mitsubishi RV-M1

![Diagram of Mitsubishi RV-M1 robot with labeled axes and dimensions.]

<table>
<thead>
<tr>
<th>DoF</th>
<th>(\theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercises: Forward Kinematics

Stanford Manipulator

<table>
<thead>
<tr>
<th>DoF</th>
<th>θ_i</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>